Search results for "Feature engineering"

showing 6 items of 6 documents

Automatic Content Analysis of Computer-Supported Collaborative Inquiry-Based Learning Using Deep Networks and Attention Mechanisms

2020

Computer-supported collaborative inquiry-based learning (CSCIL) represents a form of active learning in which students jointly pose questions and investigate them in technology-enhanced settings. Scaffolds can enhance CSCIL processes so that students can complete more challenging problems than they could without scaffolds. Scaffolding CSCIL, however, would optimally adapt to the needs of a specific context, group, and stage of the group's learning process. In CSCIL, the stage of the learning process can be characterized by the inquiry-based learning (IBL) phase (orientation, conceptualization, investigation, conclusion, and discussion). In this presentation, we illustrate the potential of a…

Feature engineeringWord embeddingComputer scienceProcess (engineering)Context (language use)neuroverkot010501 environmental sciencesoppimisanalytiikkaMachine learningcomputer.software_genre01 natural sciencesluonnollinen kielitietokoneavusteinen oppimineninquiry based learningnatural language processingyhteisöllinen oppiminentutkiva oppiminen0105 earth and related environmental sciencesInterpretabilityArtificial neural networkbusiness.industry05 social sciences050301 educationsisällönanalyysideep neural networksActive learningInquiry-based learningArtificial intelligencebusiness0503 educationcomputer
researchProduct

Classification of Heart Sounds Using Convolutional Neural Network

2020

Heart sounds play an important role in the diagnosis of cardiac conditions. Due to the low signal-to-noise ratio (SNR), it is problematic and time-consuming for experts to discriminate different kinds of heart sounds. Thus, objective classification of heart sounds is essential. In this study, we combined a conventional feature engineering method with deep learning algorithms to automatically classify normal and abnormal heart sounds. First, 497 features were extracted from eight domains. Then, we fed these features into the designed convolutional neural network (CNN), in which the fully connected layers that are usually used before the classification layer were replaced with a global averag…

Feature engineeringComputer science0206 medical engineeringconvolutional neural networkneuroverkot02 engineering and technologyOverfittingConvolutional neural networklcsh:Technologylcsh:Chemistry0202 electrical engineering electronic engineering information engineeringFeature (machine learning)General Materials ScienceSensitivity (control systems)sydäntauditInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processesbusiness.industrylcsh:TProcess Chemistry and TechnologyDeep learning020208 electrical & electronic engineeringGeneral EngineeringPattern recognitiondiagnostiikkaMatthews correlation coefficientautomatic heart sound classification020601 biomedical engineeringlcsh:QC1-999Computer Science Applicationsfeature engineeringkoneoppiminenlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Heart soundsArtificial intelligencetiedonlouhintabusinesslcsh:Engineering (General). Civil engineering (General)lcsh:PhysicsApplied Sciences
researchProduct

Adaptive Distance-Based Pooling in Convolutional Neural Networks for Audio Event Classification

2020

In the last years, deep convolutional neural networks have become a standard for the development of state-of-the-art audio classification systems, taking the lead over traditional approaches based on feature engineering. While they are capable of achieving human performance under certain scenarios, it has been shown that their accuracy is severely degraded when the systems are tested over noisy or weakly segmented events. Although better generalization could be obtained by increasing the size of the training dataset, e.g. by applying data augmentation techniques, this also leads to longer and more complex training procedures. In this article, we propose a new type of pooling layer aimed at …

Feature engineeringAcoustics and Ultrasonicsbusiness.industryComputer scienceFeature vectorFeature extractionPoolingPattern recognitionConvolutional neural network030507 speech-language pathology & audiology03 medical and health sciencesComputational MathematicsTransformation (function)Feature (computer vision)Adaptive systemComputer Science (miscellaneous)Artificial intelligenceElectrical and Electronic Engineering0305 other medical sciencebusinessIEEE/ACM Transactions on Audio, Speech, and Language Processing
researchProduct

Effective feature descriptor-based new framework for off-line text-independent writer identification

2018

Feature engineering is a key factor of machine learning applications. It is a fundamental process in writer identification of handwriting, which is an active and challenging field of research for many years. We propose a conceptually computationally efficient, yet simple and fast local descriptor referred to as Block Wise Local Binary Count (BW-LBC) for offline text-independent writer identification of handwritten documents. Proposed BW-LBC operator, which characterizes the writing style of each writer, is applied to a set of connected components extracted and cropped from scanned handwriting samples (documents or set of words/text lines) where each labeled component is seen as a texture im…

Feature engineering0209 industrial biotechnologyComputer sciencebusiness.industryFeature vectorFeature extraction02 engineering and technologycomputer.software_genreWriting styleIdentification (information)020901 industrial engineering & automationHandwritingClassifier (linguistics)ComputingMethodologies_DOCUMENTANDTEXTPROCESSING0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerArabic scriptNatural language processing2018 International Conference on Intelligent Systems and Computer Vision (ISCV)
researchProduct

Toward Optimal LSTM Neural Networks for Detecting Algorithmically Generated Domain Names

2021

Malware detection is a problem that has become particularly challenging over the last decade. A common strategy for detecting malware is to scan network traffic for malicious connections between infected devices and their command and control (C&C) servers. However, malware developers are aware of this detection method and begin to incorporate new strategies to go unnoticed. In particular, they generate domain names instead of using static Internet Protocol addresses or regular domain names pointing to their C&C servers. By using a domain generation algorithm, the effectiveness of the blacklisting of domains is reduced, as the large number of domain names that must be blocked g…

Feature engineeringGeneral Computer ScienceArtificial neural networkComputer sciencebusiness.industrymalwareDeep learningGeneral EngineeringDeep learningdomain generation algorithmscomputer.software_genreBlacklistDomain (software engineering)TK1-9971ServerMalwareGeneral Materials ScienceNetwork performanceArtificial intelligenceData miningElectrical engineering. Electronics. Nuclear engineeringbusinessLSTMcomputerIEEE Access
researchProduct

CitySearcher: A City Search Engine For Interests

2017

We introduce CitySearcher, a vertical search engine that searches for cities when queried for an interest. Generally in search engines, utilization of semantics between words is favorable for performance improvement. Even though ambiguous query words have multiple semantic meanings, search engines can return diversified results to satisfy different users' information needs. But for CitySearcher, mismatched semantic relationships can lead to extremely unsatisfactory results. For example, the city Sale would incorrectly rank high for the interest shopping because of semantic interpretations of the words. Thus in our system, the main challenge is to eliminate the mismatched semantic relationsh…

Feature engineeringWord embeddingkaupungitComputer scienceInformation needs02 engineering and technologysemanttinen webSemanticscomputer.software_genresearch enginesSearch enginesemantic web020204 information systems0202 electrical engineering electronic engineering information engineeringhakuohjelmatWord2vectowns and citiesta113Information retrievalbusiness.industryRank (computer programming)Semantic searchsuosittelujärjestelmätVertical search020201 artificial intelligence & image processingLearning to rankArtificial intelligencerecommender systemsbusinesscomputerNatural language processing
researchProduct